\(\int \frac {(e x)^m (A+B x^2)}{(a+b x^2) (c+d x^2)} \, dx\) [27]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 125 \[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\frac {(A b-a B) (e x)^{1+m} \operatorname {Hypergeometric2F1}\left (1,\frac {1+m}{2},\frac {3+m}{2},-\frac {b x^2}{a}\right )}{a (b c-a d) e (1+m)}+\frac {(B c-A d) (e x)^{1+m} \operatorname {Hypergeometric2F1}\left (1,\frac {1+m}{2},\frac {3+m}{2},-\frac {d x^2}{c}\right )}{c (b c-a d) e (1+m)} \]

[Out]

(A*b-B*a)*(e*x)^(1+m)*hypergeom([1, 1/2+1/2*m],[3/2+1/2*m],-b*x^2/a)/a/(-a*d+b*c)/e/(1+m)+(-A*d+B*c)*(e*x)^(1+
m)*hypergeom([1, 1/2+1/2*m],[3/2+1/2*m],-d*x^2/c)/c/(-a*d+b*c)/e/(1+m)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {598, 371} \[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\frac {(e x)^{m+1} (A b-a B) \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},-\frac {b x^2}{a}\right )}{a e (m+1) (b c-a d)}+\frac {(e x)^{m+1} (B c-A d) \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},-\frac {d x^2}{c}\right )}{c e (m+1) (b c-a d)} \]

[In]

Int[((e*x)^m*(A + B*x^2))/((a + b*x^2)*(c + d*x^2)),x]

[Out]

((A*b - a*B)*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x^2)/a)])/(a*(b*c - a*d)*e*(1 + m))
 + ((B*c - A*d)*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)])/(c*(b*c - a*d)*e*(1 +
m))

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 598

Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Sy
mbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e,
f, g, m, p}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {(A b-a B) (e x)^m}{(b c-a d) \left (a+b x^2\right )}+\frac {(B c-A d) (e x)^m}{(b c-a d) \left (c+d x^2\right )}\right ) \, dx \\ & = \frac {(A b-a B) \int \frac {(e x)^m}{a+b x^2} \, dx}{b c-a d}+\frac {(B c-A d) \int \frac {(e x)^m}{c+d x^2} \, dx}{b c-a d} \\ & = \frac {(A b-a B) (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{2};\frac {3+m}{2};-\frac {b x^2}{a}\right )}{a (b c-a d) e (1+m)}+\frac {(B c-A d) (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{2};\frac {3+m}{2};-\frac {d x^2}{c}\right )}{c (b c-a d) e (1+m)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.80 \[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\frac {x (e x)^m \left ((-A b c+a B c) \operatorname {Hypergeometric2F1}\left (1,\frac {1+m}{2},\frac {3+m}{2},-\frac {b x^2}{a}\right )+a (-B c+A d) \operatorname {Hypergeometric2F1}\left (1,\frac {1+m}{2},\frac {3+m}{2},-\frac {d x^2}{c}\right )\right )}{a c (-b c+a d) (1+m)} \]

[In]

Integrate[((e*x)^m*(A + B*x^2))/((a + b*x^2)*(c + d*x^2)),x]

[Out]

(x*(e*x)^m*((-(A*b*c) + a*B*c)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x^2)/a)] + a*(-(B*c) + A*d)*Hyp
ergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)]))/(a*c*(-(b*c) + a*d)*(1 + m))

Maple [F]

\[\int \frac {\left (e x \right )^{m} \left (x^{2} B +A \right )}{\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}d x\]

[In]

int((e*x)^m*(B*x^2+A)/(b*x^2+a)/(d*x^2+c),x)

[Out]

int((e*x)^m*(B*x^2+A)/(b*x^2+a)/(d*x^2+c),x)

Fricas [F]

\[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{m}}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}} \,d x } \]

[In]

integrate((e*x)^m*(B*x^2+A)/(b*x^2+a)/(d*x^2+c),x, algorithm="fricas")

[Out]

integral((B*x^2 + A)*(e*x)^m/(b*d*x^4 + (b*c + a*d)*x^2 + a*c), x)

Sympy [F]

\[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\int \frac {\left (e x\right )^{m} \left (A + B x^{2}\right )}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )}\, dx \]

[In]

integrate((e*x)**m*(B*x**2+A)/(b*x**2+a)/(d*x**2+c),x)

[Out]

Integral((e*x)**m*(A + B*x**2)/((a + b*x**2)*(c + d*x**2)), x)

Maxima [F]

\[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{m}}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}} \,d x } \]

[In]

integrate((e*x)^m*(B*x^2+A)/(b*x^2+a)/(d*x^2+c),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(e*x)^m/((b*x^2 + a)*(d*x^2 + c)), x)

Giac [F]

\[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{m}}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}} \,d x } \]

[In]

integrate((e*x)^m*(B*x^2+A)/(b*x^2+a)/(d*x^2+c),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(e*x)^m/((b*x^2 + a)*(d*x^2 + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^m \left (A+B x^2\right )}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx=\int \frac {\left (B\,x^2+A\right )\,{\left (e\,x\right )}^m}{\left (b\,x^2+a\right )\,\left (d\,x^2+c\right )} \,d x \]

[In]

int(((A + B*x^2)*(e*x)^m)/((a + b*x^2)*(c + d*x^2)),x)

[Out]

int(((A + B*x^2)*(e*x)^m)/((a + b*x^2)*(c + d*x^2)), x)